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Summary
Cysteinyl leukotrienes (CysLTs) are a family of inflammatory lipid mediators synthesized from
arachidonic acid by a variety of cells, including mast cells, eosinophils, basophils, and
macrophages. This article reviews the data for the role of CysLTs as multi-functional
mediators in allergic rhinitis (AR). We review the evidence that: (1) CysLTs are released from
inflammatory cells that participate in AR, (2) receptors for CysLTs are located in nasal tissue,
(3) CysLTs are increased in patients with AR and are released following allergen exposure, (4)
administration of CysLTs reproduces the symptoms of AR, (5) CysLTs play roles in the
maturation, as well as tissue recruitment, of inflammatory cells, and (6) a complex inter-
regulation between CysLTs and a variety of other inflammatory mediators exists.
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Introduction

Allergic rhinitis (AR), which affects approximately 20% of
the population in industrialized countries, is associated
with substantial morbidity, primarily in the context of
reduced quality of life and productivity. Patients with AR
experience increased incidence of acute sinusitis and otitis
media, both of which can be regarded as causatively linked
to nasal disease. In addition, AR is closely related to
asthma: more than 80% of patients with atopy and asthma
have some form of nasal disease, and the prevalence of
asthma in patients with AR can reach 40%, at least fivefold
greater than that observed in the general population [1, 2].
Rhinitis also is a major risk factor for the development of
asthma. Finally, AR is a prototype of immediate hypersen-
sitivity, and understanding its pathophysiology is of sig-
nificance for the entire spectrum of allergic conditions.

Identified in the late 1970s [3], leukotrienes are a family
of inflammatory lipid mediators synthesized from arachi-
donic acid by a variety of cells, including mast cells,
eosinophils, neutrophils, basophils, and macrophages. The
cleavage of arachidonic acid from the nuclear membrane
by phospholipase A2 (PLA2) initiates the synthesis of
the leukotrienes [4]. The subsequent interaction of arachi-

donic acid with the biosynthetic proteins 5-lipoxygenase
(5-LO) and 5-lipoxygenase activating protein (FLAP)
forms the intermediate 5-HPETE (5-hydroxyperoxy-
6,8,11,14-eicosatetraenoic acid), which is quickly con-
verted to LTA4. LTA4 can be converted to LTB4 by LTA4

hydrolase or to LTC4 by LTC4 synthase. LTC4 is converted
extracellularly to LTD4 and LTE4 by sequential amino acid
removal from the glutathione tripeptide moiety. LTC4 is
converted to LTD4 through removal of glutamic acid by
g-glutamyl transpeptidase. Glycine is then removed from
LTD4 by dipeptidase. Consequently, LTC4, LTD4, and LTE4

are together referred to as cysteinyl leukotrienes (CysLTs).
LTE4 is the most stable of the CysLTs and can be measured
after excretion into the urine; urinary LTE4 is often used as
a marker of ‘whole body’ leukotriene synthesis. LTB4

contains no cysteine, and is, therefore, not a CysLT.
CysLTs exert their actions through activation of two

G-protein-coupled receptors: CysLT subtype 1 receptor
(CysLT1) and CysLT2. CysLT1 is the most studied and is the
target for the drugs montelukast, zafirlukast, and pranlu-
kast. As such, its role in AR and other conditions is better
understood. By contrast, there is a paucity of information
about the role of CysLT2, in part because no specific
antagonists for this receptor are yet available. Both
receptors are present in inflammatory cells, blood vessels,
and nasal glandular cells [5–10]. CysLT1 binds LTD4 with
much greater affinity than either LTC4 or LTE4 [11]; in
contrast, CysLT2 binds LTC4 = LTD44 LTE4. Signaling
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through both subtypes of the CysLT receptor is mediated,
in part, through intracellular calcium mobilization.

CysLTs were originally established as mediators of
asthma. However, AR involves immunologically similar
reactions, and it was only logical to assume that the
CysLTs would be important mediators in this condition.
CysLTs and leukotriene receptor occupancy have been
linked to several processes in AR, including: (1) dilation
of nasal blood vessels and vascular permeability with
oedema formation, both leading to nasal congestion, (2)
increased mucus production and secretion, leading to
rhinorrhea, and (3) recruitment of inflammatory cells
from the bloodstream into tissue, thus perpetuating the
inflammatory response. However, there is a growing body
of evidence suggesting that CysLTs are multi-functional
mediators playing a broader role in the inflammation that
characterizes allergic disorders such as AR.

This article reviews the data for the role of CysLTs as
multi-functional mediators in AR. We will review the
evidence that: (1) CysLTs are released from inflammatory
cells that participate in AR, (2) receptors for CysLTs are
located in nasal tissue, (3) CysLTs are increased in patients
with AR and are released following allergen exposure, (4)
CysLTs produce symptoms of AR, (5) CysLTs play a role in
bone marrow production and tissue recruitment of in-
flammatory cells, and (6) there is a complex inter-regula-
tion between CysLTs and a variety of other inflammatory
mediators.

Cells that are linked to the pathogenesis of allergic rhinitis
produce and release cysteinyl leukotrienes

Mast cells, basophils, eosinophils, dendritic cells, mono-
cytes/macrophages, and T lymphocytes collectively initiate

and perpetuate mucosal inflammation in AR. The IgE-
bearing mast cells and basophils have the greatest capacity
to produce CysLTs, but eosinophils, dendritic cells, mono-
cytes/macrophages, and T lymphocytes also have been
shown to release CysLTs (Table 1). Basophils produce more
than 100-fold higher amounts of CysLTs compared with
eosinophils [12, 13]. Eosinophils isolated from patients
with AR released significantly higher levels of CysLTs than
eosinophils isolated from healthy subjects following sti-
mulation with the calcium ionophore A23187 [14]. Re-
cently, expression of the CysLT biosynthetic proteins 5-LO,
FLAP, and LTC4 synthase was demonstrated in inflamma-
tory cells present in the nasal secretions of symptomatic
patients with seasonal AR [15]. Most of the cells expressing
these proteins were eosinophils and mononuclear cells;
interestingly, only 30% of mast cells and basophils
expressed these enzymes. Many of the same inflammatory
cells that secrete CysLTs also express the cell surface
CysLT1 receptor (Table 1), suggesting an autoregulatory
mechanism.

Receptors for cysteinyl leukotrienes are found in tissue and
on cells that are involved in allergic rhinitis inflammation
and symptoms

Using in situ hybridization and immunohistochemical
techniques, the CysLT1 receptor has been localized to
nasal mucosal interstitial cells, glandular epithelium, and
a variety of inflammatory cells (Table 1). Mast cells,
neutrophils, eosinophils, monocytes, and macrophages
isolated from nasal lavage fluid of patients with active
AR express the CysLT1 receptor [15]. CysLT1 receptor
mRNA and protein have been found on blood vessels,
interstitial cells, eosinophils, mast cells, monocytes/

Table 1. Studies demonstrating cells that express the CysLT1 receptor and cells that synthesize cysteinyl leukotrienes (CysLTs)

Cell type Express CysLT1receptor

CysLT synthesis

Production of CysLTs Presence of CysLT synthetic enzymes

Basophils [15, 17] [176–178] 5-LO, FLAP, LTC4 Syn [15]
Mast Cells [15, 16, 18, 20, 179] [57, 129, 176, 180–182] 5-LO, FLAP, LTC4 Syn [15, 57]
Monocytes [5, 15–17] [183, 184] 5-LO, FLAP, LTC4 Syn [15]
Eosinophils [5, 15–17, 20, 119, 156, 185] [14, 163, 186–190] 5-LO, FLAP, LTC4 Syn [15]
Dendritic cells [39, 40] [39] 5-LO and FLAP [42, 191]; FLAP, 5-LO and LTC4 Syn [39]
Macrophages [11, 15–17, 20, 21, 192] 5-LO, FLAP, LTC4 Syn [15]
T lymphocytes [5, 20, 193] [194]
B lymphocytes [17]
Neutrophils [5, 15, 16, 20] [195] 5-LO, FLAP [15]
Haematopoietic stem cells [17, 19] [91, 93] 5-LO [19]
Epithelial cells — [196] LTC4 Syn [15]
Glandular epithelium [16, 69]
Endothelial cells [16, 197] [91, 197]
Smooth muscle cells [11, 17] —

CysLT1 receptor, cysteinyl leukotriene subtype 1 receptor; 5-LO, 5-lipoxygenase enzyme; FLAP, 5-lipoxygenase activating protein; LTC4Syn,
LTC4synthase.
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macrophages, neutrophils, and glandular and vascular
endothelium of human nasal mucosal tissue of patients
undergoing turbinectomy [16]. Using a panel of peripheral
blood cell markers, the presence of the CysLT1 receptor
also has been demonstrated on circulating eosinophils, B
lymphocytes, basophils, monocytes, macrophages, and on
CD341 haematopoietic stem cells [5, 15, 17–20].

CysLT1 expression is subject to regulation in vitro
and in vivo. For example, cytokines have been shown to
enhance CysLT1 expression in leucocytes and mesenchy-
mal cells in vitro [21]. Sousa et al. [20] studied the
expression and regulation of the CysLT1 receptor on
nasal mucosal inflammatory cells from aspirin-sensitive
and non-aspirin-sensitive patients with rhinosinusitis
and polyps treated with lysine aspirin or placebo.
Compared with the non-aspirin-sensitive patients, the
absolute number of cells and the percentage of CD451

leucocytes expressing the CysLT1 receptor, but not the
LTB4 receptor, was higher in the aspirin-sensitive patients.
Desensitization with lysine aspirin selectively reduced the
number of CD451 leucocytes expressing the CysLT1

receptor, but not the LTB4 receptor, suggesting a specific
receptor-regulating mechanism associated with the
therapeutic benefit of aspirin desensitization in patients
with asthma and AR [22]. These data by Sousa and
coworkers are the first to demonstrate that CysLT1 expres-
sion can be modulated in disease states and suggest that
down-regulation of CysLT1 receptor could represent a
mechanism for therapeutic benefit (in this case, by aspirin
desensitization).

CysLT2 receptors are broadly distributed not only in
leucocytes, but also in heart tissue, brain, adrenal glands,
and vasculature. Recent studies in mice with deletion [23]
or overexpression [24] of CysLT2 suggest a prominent role
for this receptor in mediating vascular permeability, a
process to which CysLT1 also clearly contributes [25]
Emerging data suggest that CysLT2 may also contribute
to fibroproliferation [23, 26] and to inflammatory re-
sponses [6] in a manner distinct from CysLT1.

Cysteinyl leukotrienes are found in patients with allergic
rhinitis

Several studies have demonstrated that CysLT levels in
nasal fluids are increased in patients with AR (Table 2).
CysLTs are significantly elevated in nasal lavage fluid
from symptomatic allergic rhinitic patients compared
with that from healthy controls [27–29], as well as in
nasal lavage fluids during the early and late allergic
responses [30–33]. CysLTs were elevated in nasal secre-
tions within 5 min [33] and persisted for 30 min [31]
following allergen exposure, and these levels correlated
with the duration of symptoms [31]. Ragweed challenge
elevated CysLT concentrations in a dose-dependent man-
ner in patients with AR [30, 31], whereas challenge with

methacholine [34] or non-relevant allergen [35] had no
effect. CysLT levels fluctuated with seasonal allergen
exposure [33, 36] and correlated with symptom scores in
individuals with AR, but not in non-allergic controls [37].
Levels of CysLTs were also found to increase in nasal
fluids when reactions to cold, dry air take place, presum-
ably as a result of mast cell degranulation [38]. This raises
the possibility that CysLTs may participate in some forms
of rhinitis in the absence of allergic reactions.

Cysteinyl leukotrienes may be participating in the process
of allergic sensitization

An allergic response requires processing of the allergen by
an antigen-presenting cell. Dendritic cells are potent
antigen-presenting cells, initiating the immune response
by taking up and presenting antigen to and influencing
the polarization of T cells. The effect of CysLTs on
dendritic cell function has recently been explored. Den-
dritic cells express the CysLT1 receptor [39–41] and the
enzymatic machinery necessary to produce CysLTs [39,
41, 42]. CysLTs have been shown to modulate allergen-
stimulated dendritic cell production of interleukin (IL) 10,
IL-12, IL-5, and interferon g (IFN-g) [39] and to enhance
dendritic cell-stimulated antigen presentation, T cell pro-
liferation, and T cell cytokine production [41, 43, 44].
They also directly promote dendritic cell migration
[40, 45]. CysLTs may influence dendritic cell migration
indirectly by increasing the production of dendritic cell
chemoattractants, including RANTES [46, 47], macro-
phage-inflammatory-protein (MIP)-1a [40, 48], and MIP-
3a [40] from monocytes and macrophages. However, in a
recent study, CysLT1 receptor antagonists did not affect
cytokine production by monocyte-derived dendritic
cells or monocyte-derived dendritic cell effects on CD41

lymphocytes [41].

Cysteinyl leukotrienes can produce symptoms of allergic
rhinitis

Experimental exposure of the nasal mucosa to allergens in
sensitized individuals with AR initiates a dual-phase
immune response [49]. The early or immediate phase
response occurs within minutes of allergen exposure and

Table 2. Cysteinyl leukotrienes (CysLTs) are elevated in patients with
allergic rhinitis and conjunctivitis

CysLTs are elevated in Studies

Nose during natural/seasonal allergen
exposure

[27–29, 36, 37, 46, 116,
198]

Urine during natural/seasonal allergen
exposure

[72]

Nose after allergen challenge [30–35, 199–201]
Eyes after allergen challenge [202, 203]
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is characterized primarily by sneezing, nasal pruritus,
rhinorrhea, and acute congestion. The late-phase response
occurs hours after allergen exposure and is mainly asso-
ciated with congestion and, to a lesser extent, rhinorrhea
and sneezing.

Upon allergen exposure, crosslinking of IgE receptor
activates mast cells and initiates the early allergic re-
sponse through immediate release of preformed media-
tors, including histamine, proteases (e.g., tryptase), and
tumour necrosis factor a (TNF-a), and the release of newly
synthesized mediators, including CysLTs and prostaglan-
din D2. CysLTs are released from mast cells within minutes
of allergen exposure (Table 3).

Although sneezing occurs within 1–2 min of allergen
exposure and decreases rapidly thereafter, some sneezing
can occur during the late-phase response. After allergen
challenge, the timing of LTC4 release has been shown to
correlate with sneezing [30, 33]. CysLTs do not directly
induce sneezing and pruritus [50, 51]; however, CysLTs
may have an indirect effect on sneezing, as indicated by
the reduction of sneezing with zafirlukast [52] and mon-
telukast [46, 53–57], both leukotriene receptor antago-
nists, in clinical trials of patients with AR.

Nasal pruritus occurs exclusively during the early-
phase response as nerve fibres, probably stimulated by
histamine, elicit this sensation. The role of leukotrienes in
nasal pruritus is not defined. However, the ability of
leukotriene receptor antagonists to relieve the itch of
atopic dermatitis [58] and chronic idiopathic urticaria
[59, 60] suggests that leukotrienes may contribute to nasal
pruritus. This hypothesis is further supported by the
ability of montelukast to reduce nasal pruritus in clinical
trials of patients with seasonal AR [53, 54, 61, 62].

CysLTs do not directly stimulate sensory nerves. How-
ever, in the presence of CysLTs, an electrical stimulus
releases increased amounts of neuropeptides from tachy-
kinergic nerves [63, 64]. This suggests that CysLTs may

potentiate neural phenomena such as neurogenic inflam-
mation, which appear to be increased in individuals with
AR [65, 66]. In addition, the in vivo responsiveness of
nasal sensory nerves to histamine may become increased
in the presence of CysLTs, as suggested by the work of
Konno et al. [67].

Rhinorrhea, resulting from increased glandular activity,
is predominantly an early-phase symptom, but it can also
occur during the late phase. Application of LTD4 to the
nasal mucosa of patients with AR increased the amount of
nasal secretions in a dose-dependent manner, an effect
that peaked within 5 min of mediator application [31, 50].
The reduction in rhinorrhea with pranlukast [67], zafirlu-
kast [52], and montelukast [46, 53–56, 61, 68] in clinical
trials of patients with AR further supports a role for CysLTs
in stimulating nasal secretions. This effect is probably
direct, given the fact that the CysLT1 receptor has been
found on human nasal mucosal glands [16, 69].

Nasal congestion is prominent during both the early-
and the late-phase response to allergen. The late-phase
response occurs in approximately 50% of allergic patients
[70]. CysLTs have been shown to cause prolonged conges-
tion (Table 3). CysLTs also increase vascular permeability
[71], and the resulting oedema may contribute to the
narrowing of nasal passages. Five minutes after topical
application of LTD4, nasal mucosal blood flow and nasal
airway resistance increased in a dose-dependent manner
[31, 51]. In the study by Okuda et al. [50], the increase in
nasal airway resistance did not abate for several hours.
Histamine also increases nasal airway resistance, albeit to
a maximum at 20 min after application [31]. Urinary LTE4

levels were found to be significantly higher in patients
with AR with severe nasal congestion [72] and less evident
in patients with mild congestion [73]. The improvement in
nasal congestion following treatment with leukotriene
modifiers, measured either by symptom scores [46,
52–56, 74] or airway resistance [61, 67, 68] in clinical

Table 3. Allergen-induced rhinitis and clinical rhinitis outcomes affected by cysteinyl leukotrienes (CysLTs)

Symptom Studies showing effect

Sneezing Significantly correlated with CysLTs levels in patients with allergic rhinitis following allergen challenge [30]
Significantly improved with LTRA in clinical studies of patients with allergic rhinitis [46, 52–56, 61]

Rhinorrhea Significantly worsened with intranasal CysLT application [31, 50]
Significantly improved with LTRA in studies of patients with allergic rhinitis following allergen challenge [67]
Significantly improved with LTRA in clinical studies of patients with allergic rhinitis [46, 52–56, 61, 68]

Nasal pruritus Significantly improved with LTRA in clinical studies of patients with allergic rhinitis [53, 54, 61, 62]
Congestion Significantly worsened with intranasal CysLT application [31, 50, 51, 204, 205]

Significantly improved with LTRA in clinical studies of patients with allergic rhinitis [46, 52–56, 61, 67, 68, 74]
Itchy throat and palate Significantly improved with LTRA in clinical studies of patients with allergic rhinitis [52]
Eye symptoms Significantly improved with LTRA in clinical studies of patients with allergic rhinitis [53–56, 61, 143, 206]
Rhinoconjunctivitis quality

of life
Significantly improved with LTRA in clinical studies of patients with allergic rhinitis [53–56, 61, 206]

LTRA, leukotriene receptor antagonist.
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trials of patients with AR further implicates CysLTs in
mediating nasal congestion. It should be noted that,
because of the presence of both CysLT1 and CysLT2

receptors in nasal vasculature, and because stimulation
of the CysLT2 receptor appears to increase vascular perme-
ability [24], antagonism of both receptors may offer
stronger effects against nasal congestion in AR.

In support of the contribution of CysLTs in mediating
individual symptoms of the early- and late-phase allergic
response, several CysLT1 receptor antagonists have been
shown to reduce the aggregate of symptoms in clinical
trials of patients with AR (Table 3). Pranlukast improved
daytime symptoms [75], and zafirlukast improved nasal
congestion, sneezing, rhinorrhea, and itchy nose, throat,
and palate, although no clear dose-response could be
generated [52]. Montelukast has been shown to improve
daytime symptoms (congestion, rhinorrhea, sneezing, and
nasal pruritus), night-time symptoms (difficulty to sleep,
awakenings, and congestion upon awakening), daytime
eye symptoms (tearing, itchy, red, and puffy eyes), and
quality of life [53–56].

Cysteinyl leukotrienes and cellular inflammation in allergic
rhinitis

In the course of natural exposure to aeroallergens,
as well as with experimental allergen challenge, various
inflammatory cells, including eosinophils, basophils,
monocytes, and TH2 lymphocytes, are elevated in nasal
tissue and nasal secretions [76, 77] and correlate with
symptoms in patients with AR [78, 81]. Inflammatory cells
release various forms of mediators into the nasal mucosa,
ranging from symptom-producing substances to pure
cytokines that perpetuate chronic inflammation and
symptoms. The steps leading to inflammatory cell recruit-
ment are not completely understood, and it is quite likely
that the mechanisms of recruitment and activation are
unique for each cell type. There is enough evidence in
both asthma and AR to support the hypothesis that
inflammatory elements generated during local allergic
reactions may produce systemic signals affecting circulat-
ing cells, cells residing in peripheral lymphoid tissue, and
immature cells residing in the bone marrow [2, 9, 82–84].
When contemplating the continuously emerging knowl-
edge on the immunomodulatory properties of the CysLTs,
it is reasonable to put forward a hypothesis that
these mediators contribute to the systemic inflammation
associated with AR. This hypothesis is schematically
depicted in Fig. 1.

Step 1: haematopoiesis

The role of eosinophil and basophil progenitors in allergic
inflammation and their fluctuation with seasonal expo-
sure has been reviewed [85–87]. CysLTs have been shown

to play a role in leucopoiesis induced by granulocyte-
macrophage colony stimulating factor (GM-CSF) [88–90],
IL-5 [89], and IL-3. [91] In a mouse model of AR,
montelukast was shown to inhibit either bone marrow IL-
5- or GM-CSF-responsive eosinophil/basophil colony-
forming units and IL-5-stimulated eosinophil maturation
[92]. The inhibition of IL-5-dependent proliferation of
bone marrow eosinophil–basophil progenitors and GM-
CSF-dependent proliferation of peripheral blood eosino-
phil–basophil progenitors by the leukotriene receptor
antagonist montelukast [89] points to the activity of
CysLTs through the CysLT1 receptor on CD341 haemato-
poietic bone marrow stem cells [17, 19, 93]. Interestingly,
these cells express 5-LO [19, 94, 95], and bone marrow
cells can produce CysLTs upon in vitro stimulation with
the calcium ionophore A23187 [91, 93]. These data sug-
gest that CysLTs may be both paracrine and autocrine
contributors to haematopoiesis.

Step 2: migration from bone marrow

Chemotaxis and transendothelial migration of CD341

progenitor cells in response to LTD4 and inhibition by the
leukotriene receptor antagonist MK-571 [19] suggest a
role for CysLTs in leucocyte migration from the bone
marrow into the circulatory system. Chemotaxis and
transendothelial migration are preceded by endothelial
adhesion. LTD4 up-regulated adhesion of human periph-
eral blood CD341 progenitors to bone marrow endothe-
lium; this was blocked by MK-571 and antibodies against
b1 and b2 integrins [96].

Allergen

Mast
Cell

(5) Chemoattraction

(4) Migration

(3) Adhesion

(7) Cellular
Activation

(2) Cellular
Migration
from Bone

Marrow

(6) Cell
Survival

Inflammatory
Mediators

Bone
marrow

Hematopoiesis
(1)

CysLTs

Blood Vessel

Eosinophilia

Endothelium

Fig. 1. Cysteinyl leukotrienes (CysLTs) and the Inflammatory Events of
Allergic Rhinitis. Crosslinking of immunoglobulin E with allergen
initiates release of a variety of mediators from mast cells, including
CysLTs. CysLTs play a role in hematopoiesis, cellular migration from
bone marrow to the circulation, adhesion of inflammatory cells to the
vascular endothelium, migration of cells to the nasal tissue, cell survival,
and cellular activity enhancement.
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Step 3: adhesion to post-capillary venules

Leucocyte adhesion to the vascular wall is the first step in
recruitment and migration into nasal tissue. Adhesion
molecules are expressed by the nasal endothelium of
patients with AR within 24 h after nasal allergen challenge
[97]. CysLTs enhance leucocyte adhesion by increasing the
expression of the adhesion molecules P-selectin and
soluble sialyl Lewisx [98, 99], aMb2 [100], b2 integrins
[101], and Mac-1 [102]. CysLT-induced leucocyte adhe-
sion and adhesion molecule expression is inhibited by the
leukotriene receptor antagonists montelukast [102] and
pranlukast [101]. Nagata et al. [103] observed that eosino-
phil adhesion via b2 integrins to intercellular cell adhesion
molecule 1 (ICAM-1) augmented eosinophil LTC4 genera-
tion. These data suggest a positive feedback mechanism
that increases the production of CysLTs at the site of
eosinophil adhesion.

Steps 4 and 5: migration and chemoattraction

Transendothelial migration of leucocytes across the vessel
wall into the tissue follows cellular adhesion. CysLTs are
direct chemoattractants for eosinophils and have been
shown to enhance eosinophil migration in vivo [104–106]
and in vitro [92, 102, 106, 107]. This phenomenon is dose-
dependently inhibited by leukotriene receptor antagonism
with FPL 55712 [106], SK&F 104353 [107] and montelu-
kast [102, 108]. Eotaxin is a selective chemoattractant for
eosinophils. The role of CysLTs in eosinophil recruitment
is further implicated by the observation that LTC4 in-
creases eotaxin release from endothelial cells [109, 110]
and from IL-13-primed fibroblasts [111], which is blocked
by montelukast and pranlukast. Finally, montelukast
treatment has been shown to reduce eosinophils in nasal
mucosa of adults [46] and children [61] with AR.

Step 6: cell survival

Tissue eosinophilia is a function of both the influx of
eosinophils into the nasal mucosa as well as their half-life
(survival). CysLTs increase eosinophil survival time [112],
and this effect is inhibited by leukotriene receptor antago-
nists [112, 113].

Step 7: cellular activation

Once in the nasal tissue, CysLTs also promote inflamma-
tion by enhancing the activity of inflammatory cells. This
section focuses on eosinophil activation, but the ability of
CysLTs to affect the function of other inflammatory cells,
including monocytes, basophils, mast cells, and T lym-
phocytes, is also described.

Activated eosinophils release a variety of inflammatory
mediators and probably play a significant role in allergic

disease. For example, eosinophilic cationic protein (ECP)
is toxic to epithelial tissue; a consequence of such toxicity
may be exposure of sensory nerve fibres to environmental
irritants. Major basic protein (MBP), on the other hand,
can inhibit the ability of acetylcholine to prevent further
acetylcholine release from peripheral parasympathetic
nerves by deactivating the M2 receptor [114]. Elevated
ECP in the nasal fluid of patients with AR [115] correlates
with an increase in LTC4 [116], and treatment with
montelukast decreases ECP levels in the serum of adults
[117] and in nasal washes from pediatric patients [118]. A
significant correlation between CysLTs and eosinophilic
protein X, a marker of eosinophilic activity, has also been
demonstrated [27]. Superoxide radicals mediate inflam-
mation through oxidative damage in cells, and LTD4 was
shown to increase superoxide radical levels in eosinophils
in vitro [100]. Eosinophil-derived neurotoxin (EDN) is
another cytotoxic mediator. IL-5-induced release of EDN
was enhanced by LTD4 [119] and, in another study, LTD4-
induced EDN release by peripheral blood eosinophils of
healthy subjects [120]. The effects of LTD4 on superoxide
radicals and EDN were blocked by pranlukast [120].

In clinical studies, the leukotriene receptor antagonist
montelukast reduced peripheral blood eosinophil numbers
in adults [53–56] and children [61, 121] with AR. Taken
together, the effects of CysLTs on eosinophil differentia-
tion, maturation, proliferation, adhesion molecule expres-
sion, migration, survival, and activation described above
are consistent with a role of these mediators in local and
systemic allergic inflammation.

Bidirectional modulation between cysteinyl leukotrienes
and other inflammatory mediators

A complex network of interactions exists between CysLTs
and a variety of inflammatory mediators (Fig. 2).

Cysteinyl leukotrienes enhance the production and activity
of inflammatory mediators

In patients with established allergic inflammation, im-
mune responses to allergens are TH2 polarized, resulting
in a preponderance of TH2 relative to the TH1 cytokines
[122, 123]. In vitro and in vivo evidence suggests that TH2

cytokines can be modulated by CysLTs. In vitro, CysLTs or
CysLT1 receptor antagonism have been shown to modu-
late the production of IL-3 [124], IL-4 [124, 125], IL-5,
[124, 126], IL-10 [127], and GM-CSF [113, 124]. In patients
with perennial AR, 4 weeks of treatment with pranlukast
suppressed nasal mucosal production of IL-4 and IL-5
[46]. A 2-week treatment with montelukast decreased IL-4
and IL-13 levels in nasal lavage secretions from children
with AR [120]. Also, serum IL-5 levels were reduced in
children with asthma after 6 weeks of treatment with
montelukast [129].
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CysLTs may also affect a variety of non-TH2 mediators
that play a role in inflammation associated with AR. The
levels of the pro-inflammatory cytokine IL-6 were
decreased from peripheral blood mononuclear cells [130]
and those of the TH1 cytokine IFN-g were increased from
mononuclear cells [131] from healthy volunteers by
CysLT1 antagonism with pranlukast and montelukast,
respectively. In patients with AR, treatment with pranlu-
kast suppressed production of IL-1b and IL-8 in the nasal
mucosa [46], and treatment with montelukast increased
IFN-g levels in nasal secretions [128]. The increased
production of IFN-g in 5-LO knockout mice supports the
regulation of this cytokine by products of the 5-LO
pathway [132]. The level and activity of a variety of other
mediators have been shown to be modulated by CysLTs.
For example, several in vitro studies have demonstrated
that levels of TNF-a produced by mast cells [126]
and macrophages [48] are enhanced by CysLTs and
decreased by CysLT1 receptor antagonism [48, 126, 133].
In patients with perennial AR, 4 weeks of treatment with
pranlukast suppressed nasal mucosal production of TNF-a
[46]. NF-kB is a transcription factor involved in regulating
expression of proinflammatory cytokines such as IL-1,
IL-6, IL-8, and TNF-a. Pranlukast and MK-571 have been
shown to inhibit NF-kB activation in monocytes
[130, 133]. In human mast cells, LTC4 and LTD4 increased

the release of macrophage inflammatory protein-1b
(MIP-1b), and this was blocked by MK-571 [126].
RANTES, which is produced by T cells, is a potent
chemoattractant for monocytes, lymphocytes, and eosi-
nophils. The level of RANTES in nasal mucosa of patients
with perennial AR was decreased after 4 weeks treatment
with pranlukast [46].

CysLTs have also been shown to affect mediators
of inflammatory tissue growth and repair. For example,
the proliferative effects of epidermal growth factor
(EGF) on smooth muscle cells in culture were poten-
tiated by LTD4 [134]. The proliferative effects of insulin-
like growth factor (IGF) on smooth muscle cells in culture
were also potentiated by LTD4 induction of matrix
metalloproteinases (MMP-1) [135]. Insulin-like growth
factor binding proteins (IGFBP) limit the ability of
IGF to enhance differentiation, growth, and proliferation
of cells. Proteolysis of IGFBP by MMP-1 removes inhibi-
tion of the IGF effects. Plasminogen activator inhibitor
type-1 (PAI-1) promotion of abnormal tissue repair
plays a role in airway remodeling; LTD4 increased,
and montelukast decreased, production of PAI-1 by mast
cells [136].

There is evidence for an interaction between CysLTs
and histamine, another pivotal mediator of allergic
reactions. LTD4 enhanced histamine-induced elevation
of cytosolic calcium levels in cultured embryonic
carcinoma cells [137] and prostaglandin E2 (PGE2) pro-
duction from human monocytes and smooth muscle cells,
as well as mouse macrophages [138]. The LTD4-enhanced
histamine-induced PGE2 production was coincident with
the appearance of additional histamine receptors [138].
These in vitro observations are in concordance with
the in vivo effects of CysLT1 antagonism on nasal respon-
siveness to histamine described earlier [67]. The
modulation of endothelin by CysLTs has also been demon-
strated [139].

Exhaled nitric oxide (NO) is a marker of airway
inflammation. Montelukast has been shown to reduce
levels of exhaled NO in clinical trials with asthmatic
adults [140, 141] and children [142, 143], but no
studies have evaluated whether nasal NO is also affected.
In vitro, LTC4 increased NO release from polymorpho-
nuclear leucocytes [144] and from macrophages [145].
Ethacrynic acid, an inhibitor of LTC4 production,
has been shown to inhibit NO production by mouse
peritoneal macrophages [146]. Ovalbumin (OVA) chal-
lenge in OVA-sensitized rats increased lung-inducible
nitric oxide synthase (iNOS) expression, which was
decreased by treatment with montelukast [147]. Taken
together, these data suggest a mechanism for the
reduction in eNO observed clinically with montelukast.
Superoxide radical levels in eosinophils have also been
shown to be increased by LTD4 [100] and blocked by
pranlukast [120].
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Fig. 2. Interactions between cysteinyl leukotrienes (CysLTs) and inflam-
matory mediators. (a) Studies have demonstrated bidirectional regulation
of these mediators; i.e., activity of these mediators can be modulated by
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can modulate activity of CysLTs.
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Inflammatory mediators enhance the production and
activity of cysteinyl leukotrienes

In addition to the effects of CysLTs on other inflammatory
mediators, the converse is also true, in that various
inflammatory mediators can exert regulatory effects on
CysLTs. Several studies have demonstrated the ability of
TH2 cytokines to enhance the synthesis of CysLTs as well
as the expression of the CysLT1 receptor. IL-5 increases the
expression of FLAP and the translocation of 5-LO to the
nucleus of eosinophils, which is accompanied by an
increase in CysLT synthesis [148]. IL-3, IL-4, and IL-5
augment CysLT production by mast cells through induc-
tion of LTC4 synthase and 5-LO nuclear translocation [57].
The combination of IL-3 and C5a stimulated the produc-
tion of LTC4 in basophils [149]. IL-3 [13, 149, 150], IL-5
[13, 149], and GM-CSF [149, 151, 152] stimulated CysLT
synthesis in eosinophils, basophils, and T lymphocytes.
GM-CSF also stimulated LTC4 synthesis through increased
PLA2 mobilization of arachidonic acid in macrophages
[153] and increased CysLT synthetic capacity through
increased 5-LO [154] and FLAP expression [154, 155] in
monocytes and neutrophils. TH2 cytokines also up-reg-
ulate CysLT1 receptors, a mechanism that, theoretically,
can enhance CysLT actions. IL-5 [156], IL-4 [21, 126], and
IL-13 [21, 157] up-regulated the expression of function-
ally active CysLT1 receptors on HL-60 cells differentiated
into eosinophils (IL-5), monocytes (IL-4 and IL-13),
macrophages (IL-4 and IL-13), and smooth muscle cells
(IL-13). In support of the interaction between IL-13 and
CysLTs, leukotriene receptor antagonism with MK-571
inhibited IL-13-induced CysLT synthesis in bronchoalveo-
lar lavage (BAL) fluid in a mouse model of asthma [158].
The full range of interaction between TH2 cytokines and
leukotrienes was illustrated in an in vitro study, which
demonstrated that IL-13 increased CysLT1 receptor ex-
pression on lung-derived fibroblasts, subsequently en-
abling the cells to respond to LTC4 stimulation by
releasing functionally active eotaxin, which subsequently
promoted eosinophil chemotaxis and migration [111].
However, CysLT1 receptors have not been observed on
nasal polyp-derived fibroblasts [159].

Non-TH2 inflammatory mediators also regulate CysLT
synthesis and receptor activity. CysLT1 receptor expres-
sion on smooth muscle cells and endothelial cells has been
demonstrated to increase when stimulated with IFN-g
[157, 160] and IL-1b [161]. IL-16 is increased in nasal
mucosa of patients with AR during seasonal allergy
exposure [162] and is a chemoattractant for eosinophils.
In human eosinophils, IL-16-stimulated eotaxin release
was followed by activation of CCR3 receptors and
enhanced LTC4 and IL-4 release. These data suggest that
IL-16-stimulated LTC4 and IL-4 release may occur through
autocrine eotaxin activation of CCR3 receptors [163].
Transforming growth factor b1 (TGF-b1) and, to a lesser

extent, TGF-b2 up-regulated 5-LO activity in HL-60 cells
induced to granulocytic differentiation by dimethyl
sulfoxide [164], LTC4 synthase expression in THP-1
macrophages [165], and CysLT1 receptor expression in
smooth muscle cells [157]. The ability of TGF-b1 and LTD4

to synergistically enhance smooth muscle proliferation
[157] functionally illustrates the inter-regulation of these
two mediators. TNF-a [166], MCP-1 [149], C5a [149],
platelet-activating factor (PAF) [167, 168], and endothelin
[169] have been shown to enhance CysLT production by
eosinophils, basophils, and mast cells, whereas nerve
growth factor (NGF) [166] and oxidants [170] have been
shown to reduce CysLT production. Finally, NO has been
shown to increase CysLT production from human mast
cells [171].

Summary/conclusion

A substantial body of research reviewed in this article
indicates that CysLTs satisfy Koch’s postulates as media-
tors of AR, as (i) they are overproduced in the nasal
mucosa of patients with the disease; (ii) they reproduce
many clinical features of AR; and (iii) pharmacologic
agents that block their synthesis or receptor-mediated
actions attenuate the manifestations of AR. Recent studies
have also elucidated a variety of mechanisms, other than
direct symptom production, by which CysLTs promote AR.
They have revealed that these lipid mediators participate
in the genesis of systemic immune responses to antigen
and in leucocyte accumulation, survival, and activation in
affected tissues. One particularly compelling, but
underappreciated, aspect of the involvement of CysLTs in
allergic disease is the bidirectional interplay between
CysLTs and other inflammatory mediators, such as
cytokines, chemokines, growth factors, histamine, and
reactive oxygen and nitrogen species. In this regard,
leukotrienes can modulate the generation of a variety of
mediators, and other mediators can modulate leukotriene
actions by influencing both their synthesis and the
expression of their receptors. Although a role for CysLTs
in the pathogenesis of asthma was recognized
first – involving many of these same mechanisms – the
subsequent recognition of their role in AR supports the
concept of a unified airway response to common trigger-
ing events.

It should be clearly stated that CysLTs represent only
one of the participants of the allergic response. Other
biologic products, including histamine or PGD2, play
important roles. For example, histamine, acting through
its H1 receptors, not only generates acute nasal symptoms,
but it also has several properties that are not identifiable
on the basis of its acute action on the nasal mucosa,
including immunomodulatory activities and interactions
with other mediators [172, 173]. CysLT1 receptor antago-
nists, like H1 receptor antagonists, have well-established
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clinical effects in AR. In fact, their overall clinical effec-
tiveness appears to be of similar magnitude [174]. These
antagonists are less effective compared with nasal gluco-
corticosteroids because the latter agents have a wider
target spectrum. It should be kept in mind, however, that
the systemic nature of treatment that CysLT1 receptor
antagonists and antihistamines provide may have addi-
tional benefits that are not identifiable by the short-term
studies that target the symptoms of AR [175]. This concept
requires exploration.
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